
Decorators
Functions That Make Functions

C-START Python PD Workshop

C-START Python PD Workshop Decorators

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

C-START Python PD Workshop Decorators

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42

In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

C-START Python PD Workshop Decorators

Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>
Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.

C-START Python PD Workshop Decorators

*args, **kwargs

Python allows you to define functions that take a variable number
of positional (*args) or keyword (**kwargs) arguments. In
principle, this really just works like tuple expansion/collection.

def crazyprinter(*args, **kwargs):
for arg in args:

print(arg)
for k, v in kwargs.items():

print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

C-START Python PD Workshop Decorators

*args, **kwargs

Python allows you to define functions that take a variable number
of positional (*args) or keyword (**kwargs) arguments. In
principle, this really just works like tuple expansion/collection.
def crazyprinter(*args, **kwargs):

for arg in args:
print(arg)

for k, v in kwargs.items():
print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
hello
cheese
bar=foo

C-START Python PD Workshop Decorators

Decorators

@property as we just saw is what is called a decorator. Decorators
are really just a pretty way to wrap functions using functions that
return functions.

Both the following are equivalent:
@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

C-START Python PD Workshop Decorators

Decorators

@property as we just saw is what is called a decorator. Decorators
are really just a pretty way to wrap functions using functions that
return functions.
Both the following are equivalent:
@logging
def foo(bar, baz):

return bar + baz - 42

equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)

C-START Python PD Workshop Decorators

Defining Decorators

When defining wrapper functions, you should decorate it with
wraps from functools, this will keep attributes about the
function.
from functools import wraps

def logging(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
print(result)
return result

return wrapper

C-START Python PD Workshop Decorators

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a
recursive function with a recurrence relation fast. Here’s an
example:

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

C-START Python PD Workshop Decorators

Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a
recursive function with a recurrence relation fast. Here’s an
example:
from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)

C-START Python PD Workshop Decorators

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard deviation
algorithm. One important property is that we won’t have to store
the results in a list.

Our goal will be to implement a decorator we can use like this:
@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

C-START Python PD Workshop Decorators

Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard deviation
algorithm. One important property is that we won’t have to store
the results in a list.
Our goal will be to implement a decorator we can use like this:
@Welford
def diceroll(u):

return int(u * 6) + 1

call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)

C-START Python PD Workshop Decorators

Decorators in the Wild: Implementing Welford

The key here is that we can make callable objects using __call__.
from functools import update_wrapper
from math import sqrt

class Welford:
def __init__(self, f):

self.f = f
update_wrapper(self, f)
self.mean = 0
self.v = 0
self.trials = 0

def __call__(self, *args, **kwargs):
r = self.f(*args, **kwargs)
self.trials += 1
d = r - self.mean
self.v += d**2 * (self.trials - 1)/self.trials
self.mean += d/self.trials
return r

@property
def stdev(self):

return sqrt(self.v/self.trials) if self.trials else 0

C-START Python PD Workshop Decorators

More Decorator Tricks

Decorators can wrap classes as well as functions. A practical
example might be creating a decorator which adds attributes
of a class to a database (a @model decorator?)

When multiple decorators are typed, they are applied
bottom-up.

C-START Python PD Workshop Decorators

More Decorator Tricks

Decorators can wrap classes as well as functions. A practical
example might be creating a decorator which adds attributes
of a class to a database (a @model decorator?)
When multiple decorators are typed, they are applied
bottom-up.

C-START Python PD Workshop Decorators

