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Functions

Functions are first-class citizens in Python:
>>> def identity(x):
... return x
...
>>> type(identity)
<class 'function'>

Functions can also be written anonymously as lambdas:
>>> identity = lambda x:x
>>> identity(42)
42
In this case, the first style is preferred. It’s a bit easier to read, not to
mention it’s actually named.
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*args, **kwargs

Python allows you to define functions that take a variable number
of positional (*args) or keyword (**kwargs) arguments. In
principle, this really just works like tuple expansion/collection.

def crazyprinter(*args, **kwargs):
for arg in args:

print(arg)
for k, v in kwargs.items():

print("{}={}".format(k, v))

crazyprinter("hello", "cheese", bar="foo")
# hello
# cheese
# bar=foo
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Decorators

@property as we just saw is what is called a decorator. Decorators
are really just a pretty way to wrap functions using functions that
return functions.

Both the following are equivalent:
@logging
def foo(bar, baz):

return bar + baz - 42

# equivalent to...
def foo(bar, baz):

return bar + baz - 42
foo = logging(foo)
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Defining Decorators

When defining wrapper functions, you should decorate it with
wraps from functools, this will keep attributes about the
function.
from functools import wraps

def logging(func):
@wraps(func)
def wrapper(*args, **kwargs):

result = func(*args, **kwargs)
print(result)
return result

return wrapper
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Decorators in the Wild: Dynamic Programming

lru_cache from functools can be a quick way to make a
recursive function with a recurrence relation fast. Here’s an
example:

from functools import lru_cache

@lru_cache(maxsize=None)
def fibonacci(n):

if n == 0 or n == 1:
return n

return fibonacci(n - 1) + fibonacci(n - 2)
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Decorators in the Wild: Welford’s Equations

Welford’s Equations are a one-pass mean and standard deviation
algorithm. One important property is that we won’t have to store
the results in a list.

Our goal will be to implement a decorator we can use like this:
@Welford
def diceroll(u):

return int(u * 6) + 1

# call diceroll with some u's in (0, 1)

print(diceroll.mean, diceroll.stdev)
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Decorators in the Wild: Implementing Welford

The key here is that we can make callable objects using __call__.
from functools import update_wrapper
from math import sqrt

class Welford:
def __init__(self, f):

self.f = f
update_wrapper(self, f)
self.mean = 0
self.v = 0
self.trials = 0

def __call__(self, *args, **kwargs):
r = self.f(*args, **kwargs)
self.trials += 1
d = r - self.mean
self.v += d**2 * (self.trials - 1)/self.trials
self.mean += d/self.trials
return r

@property
def stdev(self):

return sqrt(self.v/self.trials) if self.trials else 0
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More Decorator Tricks

Decorators can wrap classes as well as functions. A practical
example might be creating a decorator which adds attributes
of a class to a database (a @model decorator?)

When multiple decorators are typed, they are applied
bottom-up.
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