
JavaScript – Let’s
Draw!

Use that canvas, play some games

Goal

• Learn to about coordinate system

• Learn to draw lines, rectangles and
arc/circles

• Learn to use variables to control size etc.

• We’ll cover all the drawing commands,
then you’ll have a chance to explore

Start with a Canvas
• CANVAS is an HTML element

• The canvas is a container for graphics (appears like a box)
• Specify the width and height and other properties of the

canvas in HTML

• Actual drawing is done in JavaScript

<canvas id="myCanvas"

width="200" height="100"
style="border:1px solid #000000;">

</canvas>

• id is needed so JavaScript can find it

• width/height specify size in pixels

• style is optional
• inside JavaScript, canvas is an OBJECT that contains values

(soon we’ll see width & height) and also methods (see below)

// Find the canvas

var canvas =
document.getElementById("myCanvas");

// Create a drawing object (context)

var ctx = canvas.getContext("2d");

Canvas coordinates

• Drawing commands are based on x/y
coordinates

• Unlike what you may be used to from a math
class, canvas coordinates start with 0,0 in the
top left corner

• X coordinates go horizontally from 0 to pixel
width specified in HTML

• Y coordinates go vertically from 0 to pixel height
specified in HTML

• Assume; width="200" height="100"

x

y

0

0
200

100

Draw a line

If you gave a person instructions to draw a
line, you might put a mark at the start
location and a mark at the end location, then
tell the person to draw a line between those
marks.

JavaScript commands

• beginPath(); starts a new path (each
path can have attributes like color)

• moveTo(x,y); tells JS the start
location

• lineTo(x,y); tells JS the end location

• stroke(); actually draws the line

• strokeStyle = 'red'; optional,
sets style (color, gradient, pattern)

Pedagogy sidebar: You might want small
exercises so students can practice drawing one
type of object (e.g., lines) before moving on to
other shapes. We’re going full speed ahead!

Draw Rectangle

• Start with canvas and context

• Four parameters
• Upper x coordinate

• Upper y coordinate

• Width

• Height

• Can set strokeStyle/linewidth

• rect command draws

ctx.rect(5, 5, 290, 140);

• For a solid rectangle, set fillStyle

• fillRect command draws

ctx.fillStyle = "green";

ctx.fillRect(30, 30, 50, 50);

Draw a Circle

context.arc(x,y,r,startAngle,endAngle,
counterclockwise);

• x: x-coordinate of center
• y: y-coordinate of center
• r: radius of circle
• startAngle: start angle in radians, with 0

corresponding to 3:00 position
• endAngle: end angle in radians
• Counterclockwise: optional, false is default

To create a circle with arc(): Set start angle to 0 and
end angle to 2*Math.PI.

Draw an Arc

• Same parameters, but you’ll need to figure
out angles and may want to change the
direction

https://www.w3resource.com/html5-canvas/html5-canvas-arc.php

Pedagogy sidebar: You might want to provide
example files (as I have), which provide similar
function to TryItEditor of w3schools.

We’re still moving full speed ahead, but you’ll
have a chance to try it in just a minute.

https://www.w3resource.com/html5-canvas/html5-canvas-arc.php

Use Variables to Draw

• For some drawings, elements will be
positioned relative to each other

• Instead of hard-coding values, try to plan
the drawing and use variables

• You may want to base sizing on width and
height of canvas.

var canvas =
document.getElementById("myCanvas");

var ctx = canvas.getContext("2d");

ctx.fillStyle="lightGray";

// Create gray “background” for entire canvas

ctx.fillRect(0,0,canvas.width,canvas.height);

Recap

To draw in Javascript

1. Find the canvas (name match HTML)

2. Create the context (drawing object)

3. Set the style(s) as desired

• For a line
• Create a path, determine start/end locations, stroke

• For a rectangle
• Use draw or fill commands with desired coordinates

• For a circle
• Determine parameters based on picture with radians

Relax and Play

• Experiment with the provided files

• Ask questions!

• We do have a more structured exercise
coming up.

Pedagogy sidebar: Unstructured play may not
work with your students. We have a lot to cover
in a short time.

JavaScript in separate file

• For more complex programs, it’s cleaner to have
the JavaScript in a separate file

• File extension is .js

• As with CSS, we must tell the HTML file what type
of file and where to find it:

<script type="text/javascript"
src="facesPlan.js"></script>

• We’ve seen button clicks as one type of event.
Another type of event is when the program first
starts. This event is named onload.

window.onload = function() {

// alert("here");

// draw the face when the window loads

drawFace(happy);

}

Pedagogy sidebar: Challenge your assumptions. If
it looks like function isn’t doing anything, see if
it’s even being called.

Exercise: Draw a Smiley Face

Plan first!

• Plan the variables on paper - Worksheet
• I will come around and share my design with you

• Use the provided facesPlan.js template

• Test incrementally (see examples)

• Read Pedagogy on next slide

Pedagogy
• Students often struggle with planning

• Specify program structure via comments (see facesPlan.js)

• Comments identify sub-tasks

• Easier to support if all students use similar approach

• Students more likely to have success (blank page is
intimidating)

• Specifying function parameters also helpful for novice
programmers (see DrawCircle)

• Think about what info will function need

• Use meaningful names to get parameter order correct.

• Writing comments first is an actual technique used by some
professionals

• Encourage students to use code from examples (remember,
effective use of examples is critical)

• As students gain experience, require them to do this planning
step

DO NOT write the entire program then try to run it!!!!!
Model incremental testing. Comments can specify
intermediate test points. If you can get students to do this,
your job will be MUCH EASIER!

Optional Extension – more challenging

• Add a parameter to drawFace method. If
parameter is set to 0, draw happy face. If set
to 1, draw sad face.

• TEST – just hard-code function call to either 0
or 1 in the onload method.

• Add this button to your html (div just helps
with spacing)
<div>

<input type="button"

id="toggle" value="Make me sad"

onclick="toggleIt();" />

</div>

• Add a global var named happy
• Write the method named toggleIt which:

• if happy = 0, set to 1 (and vice versa)
• calls drawFace with happy as a parameter

• sets the text of the button. Hint: you know how to find
an element by id (in this case, “toggle”). Setting the
button text is like the syntax for innerHTML, but instead
of innerHTML you will set value. We covered innerHTML
at the end of yesterday’s JS lecture.

	JavaScript – Let’s Draw!�
	Goal
	Start with a Canvas
	Canvas coordinates
	Draw a line
	Draw Rectangle
	Draw a Circle
	Draw an Arc
	Use Variables to Draw
	Recap
	Relax and Play
	JavaScript in separate file
	Exercise: Draw a Smiley Face
	Pedagogy
	Optional Extension – more challenging

