
JavaScript
Same Game

Let’s design and write a complex
program!

Same Game

Goal for today: write one larger program

 Watch the game

 See the progression

 We’ll cover 2D arrays, then you can work
at your own pace

Create the Board Array

 Create 2D array with colors for each cell

 Use an array of color names (similar to Hangman
words)

 A 2D array is just an array where each row is also an
array

var tiles = new Array(numRows);

for (var row=0; row<numRows; row++) {

tiles[row] = new Array(numColumns);

}

To assign colors:

 For each row

 For each column // NESTED for loop
 Select a color # randomly

 Put the value in the cell:

 tiles[row][col] = colorNumber;

tiles[0][0]

tiles[3][3]

Draw the Array on Screen

 Must convert array position to pixel
location

 Must convert color number to color name

 We could store the color name in the
array, but that’s a lot of memory!

 Complete the worksheet questions 1 and 2

 We’ll use this worksheet again when we
deal with mouse clicks

NOW PROGRAM DRAW BOARD

HINT: Use the html etc. from Hangman, adapt as
needed.

Handling Mouse Clicks

 Clicking on the canvas is another type of EVENT.

 We need to add an event LISTENER to tell JS what
function to call:

canvas.addEventListener("mouseup",
processClick, false);

 “mouseup” specifies the event (there’s also
mousedown and others)

 processClick is the name of the function that will
be called

 false just determines when event is handled
(advanced topic, not necessary to understand)

When the mouse is clicked, processClick is called with
an event object. To access the x/y coordinates:

if (event.x === undefined || event.y === undefined) {

return; // handle error

} else {

// parameter to processClick is event

var xCoord = event.x;

var yCoord = event.y;

}

https://www.w3schools.com/jsref/met_document_addeventlistener.asp
https://www.w3schools.com/jsref/obj_mouseevent.asp

https://www.w3schools.com/jsref/met_document_addeventlistener.asp
https://www.w3schools.com/jsref/obj_mouseevent.asp

Convert mouse x/y to array

 Mouse x/y is relative to web page

 Notice (worksheet) that the canvas is
contained within the web page

/*

https://forums.tumult.com/t/canvas-
offset-problem/11863

*/

var canvasLeft =

canvas.getBoundingClientRect().left;

var canvasTop =

canvas.getBoundingClientRect().top

 Return to the worksheet and answer question 3

Check the Neighbors

 Determine if any adjacent cells

 Adjacent is up/down/left/right – not
diagonal

 Look at the worksheet. If the user has
clicked on cell [1][1], what cells are
neighbors?

 Assume row=1, col=1. What formula
would select the cell above? Below?
Right? Left?

 JS generates an error if you try to access
a cell that doesn’t exist. What error
checking is needed?

 For now, just generate an alert with
“yes” if there are adjacent neighbors,
“no” if not

NOW PROGRAM CHECK NEIGHBORS

Delete Tiles

 Deleting a tile just means turning the
color black (slot 0 in list of colors)

 The simplest solution to this problem is
RECURSIVE – means the function calls
itself

 A recursive function must have a BASE
CASE – something that prevents the
function from calling itself forever

Delete Tiles

deleteTiles(row, col) can be stated as
if this tile is black, done! (base case)
Turn this tile black
if the row above is the same color

delete tiles above
if the row below is the same color

delete tiles below
if the column left is the same color

delete tiles left
if the column right is the same color

delete tiles right

• Walk through (informally) how this would
work for green cell in row 3, col 2 (blue dot)

• How would this work for cell in row 0, col 11
(blue dot)

• How would this work for cell in row 2, col 1
(blue dot)

Code the function

 You will simply need to convert the
PSEUDOCODE (English-like description) on
the former into valid JavaScript

 Be sure to include error checks (i.e.,
ensure you don’t access row -1, etc.)

 Remember that the program has also
verified that this cell has same color
neighbors – so we can delete (set color to
black) first, then check all of its
neighbors

Pedagogy sidebar: Recursion is a natural way
to solve certain problems. In fact, it would be
much harder to code this function without it.
BUT recursion in general can be a difficult
topic (college sophomores often struggle). For
HS, probably best to provide recursive
description when it’s natural, but NOT have
students try to create their own (unless
advanced class).

Move Tiles Down
 Note that we do an alert first, so programmer can

see which cells just deleted

 Then we do the move

 “Move” means we change the color appropriately

 move cell with blue dot means cell below
becomes green, this cell becomes black

 move cell with pink dot means cell two below
becomes green, this cell becomes black

 We often process a grid starting at [0][0]. But in this
case we need to know how many cells below are
black… so we will start at the bottom of the grid
[#rows - 1][0]

Algorithm:

 We process one column at a time (why col not row?)

 For each column (0..col-1)

 set blacksBelow to 0

 For each row, starting with [#rows - 1]
 if this cell is black, add 1 to blacksBelow

 else if blacksBelow > 0 // Black cells below this one
 Move this cell down appropriately (see above)

 Set this cell to black

TRACE THIS on the back
of your worksheet
for the first 3 columns!!

Let me see your work.

0
1
2
3

0 1 2 3

Move Tiles Left

 One variable (numColors) determines the number
of tile colors

 With just 2, it’s quicker/easier to test moving the
tiles left (happens only when an entire column is
empty)

 Move Tiles Left uses a similar strategy/code as
Move Tiles Down

 How do we know a column is empty? Do we have
to look at every tile in that column? HINT: look at
the picture below. If the user clicked a blue cell
on the bottom, which column(s) would have a
black cell at the bottom? If cells have been
moved down, would you ever have a black cell at
the bottom with colored cells above?

Finish the Game

How to score
 Set score to 0 // easy to forget!
 When deleting tiles, keep track of the #

deleted
 Update score. We want to reward larger blocks

of tiles. So we can use the formula:
score += deletedTiles * (deletedTiles – 1)

Game over
 If there are no adjacent cells, loss. Will need

to go through every cell. If not black, then
check cells above and to left. Why don’t we
need to check all four directions?

 If there are no cells remaining, win. Easy
solution: just keep a running total of cells
remaining.

 To report to user on web page: include a
paragraph with a span that has an id, set the
innerHTML of that span (your approach may
vary)

End of Day 3
Let’s talk about post-work

Post Work

 Will vary by individual

 If you did not complete Hangman, finish
the game

 Maybe find another way to allow user
to enter letter. Drawing boxes for the
letters and responding to mouse clicks
is one option.

 You might want to display incorrect
letters guessed.

 If you’re looking for a challenge, pick a
game to implement (maybe Minesweeper,
has similarities to Same Game)

 Maybe do a jigsaw puzzle (take an image,
create pieces. Display shuffled pieces.
Click on image, click on grid space where
you think it belongs)

 Other ideas? Just let me know. If you’re
applying what you’ve learned in an
engaging fashion, it should be fine.

Appendix
Answer key for Move Tiles Down trace

Trace Example

 Doesn’t need to be too formal
 Very useful technique, want to encourage

students to do. Format may vary, needs to
make sense to creator.

 Putting console.log in code helps us trace
what computer is really doing (when we trace,
we sometimes trace what we WANT it to do,
rather than what we’re TELLING it to do!

	JavaScript �Same Game
	Same Game
	Create the Board Array
	Draw the Array on Screen
	Handling Mouse Clicks
	Convert mouse x/y to array
	Check the Neighbors
	Delete Tiles
	Delete Tiles
	Code the function
	Move Tiles Down
	Move Tiles Left
	Finish the Game
	End of Day 3
	Post Work
	Appendix
	Trace Example

